Accurate Parameter Estimation for Coupled Stochastic Dynamics

نویسندگان

  • ROBERT AZENCOTT
  • YUTHEEKA GADHYAN
چکیده

We develop and implement an efficient algorithm to estimate the 5 parameters of Heston’s model from arbitrary given series of joint observations for the stock price and volatility. We consider the time interval T separating two observations to be unknown and estimate it from the data, thereby estimating 6 parameters with a clear gain in fit accuracy. We compare the maximum likelihood parameter estimates based on a Euler discretization scheme to analogous estimates derived from the more accurate Milstein discretization scheme; we derive explicit conditions under which the two set of estimates are asymptotically equivalent, and we compute the asymptotic distribution of the difference of the two set of estimates. We show that parameter estimates derived from the Euler scheme by constrained optimization of the approximate maximum likelihood are consistent, and we compute their asymptotic variances. Numerically, our estimation algorithms are easy to implement,and require only very moderate amounts of CPU. We have performed extensive simulations which show that for standard range of the process parameters, the empirical variances of our parameter estimates are correctly approximated by their theoretical asymptotic variances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights on the Role of Accurate State Estimation in Coupled Model Parameter Estimation by a Conceptual Climate Model Study

The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto 10 model parameters. The signal-to-noise ratio of error covariance between the model state and parameter being estimated directly determinates whether the param...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Further Insights on the Role of Accurate State Estimation in Coupled Model Parameter Estimation by a Simple Climate Model Study

The uncertainties in values of coupled model parameters are an important source of model bias that causes model climate drift. The values can be calibrated by a parameter estimation procedure that projects observational information onto parameters. The signal-to-noise ratio of error covariance between model states and initially perturbed parameters determinates directly the success of parameter...

متن کامل

Parameter Estimation Methods for Chaotic Intercellular Networks

We have investigated simulation-based techniques for parameter estimation in chaotic intercellular networks. The proposed methodology combines a synchronization-based framework for parameter estimation in coupled chaotic systems with some state-of-the-art computational inference methods borrowed from the field of computational statistics. The first method is a stochastic optimization algorithm,...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009